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ortho-metalationsq
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Abstract—Functionalization at C-5 of 4-fluoro- and 4-chloro-1-triisopropylsilyl-7-azaindole, 1 and 2, respectively, leads to a variety
of new substituted 7-azaindole derivatives. We also describe two approaches to introduce functionality at C-6.
� 2004 Elsevier Ltd. All rights reserved.
7-Azaindole derivatives may be considered as useful
indole bioisosteres in medicinal chemistry and func-
tionalization at C-2 and C-3 of the 7-azaindole ring
system is well described in the scientific literature. Sub-
stitution of the pyrrole ring has been effected either
directly on the 7-azaindole core or, alternatively, by
cyclization of a requisite pyridine precursor.1 On the
other hand, the limited number of examples of 4-, 5-,
and 6-substituted 7-azaindoles reported thus far have
been synthesized almost exclusively from functionalized
pyridine precursors.1 Consequently, we wish to describe
herein efficient procedures for the functionalization at
C-5 and C-6 of the 7-azaindole ring system. In addition,
an application of this methodology yielding an
improved synthesis of 5-hydroxy-7-azaindole (6) is
described.

Table 1 summarizes the results we obtained when N-tri-
isopropylsilyl-4-fluoro-7-azaindole (1)2 and N-triiso-
propylsilyl-4-chloro-7-azaindole (2)3 were submitted to
directed ortho-metalation,4 followed by the addition of
an electrophile to the resulting anion to afford 4,5-
disubstituted-7-azaindoles 3 and 4, respectively (Scheme
1). The bulky silicon group prevents the lithiation at C-2
of the indole ring, therefore allowing metalation on the
pyridine ring. Consequently, when N-silylated-4-fluoro-
azaindole 1 was allowed to react with 1.5 equiv of sec-
butyllithium at )78 �C for 1 h, followed by the addition
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of N-fluorobenzenesulfonimide (NFSI),5 4,5-difluoro-7-
azaindole 3a was obtained in 70% yield.6 Introduction
of chloride or bromide at C-5 was best carried out when
hexachloroethane or carbon tetrabromide was used as
electrophiles. In the latter case, the use of N-bromo-
succinimide resulted in the isolation of bromide 3c in
only 26% yield (entry 4), along with 38% yield of the
product resulting from bromination at C-3. Interest-
ingly, this competitive electrophilic process was minor
with 4-chloro-1-triisopropylsilanyl-7-azaindole (2) and
bromide 4c (entry 12) was isolated in 68% yield with
NBS and 80% when CBr4

7 was used as the electrophile.
Control experiments without any added base showed
rapid formation of the 3-bromo regioisomers in both the
4-fluoro and 4-chloro series.

The preparation of 5-hydroxy-4-fluoro-7-azaindole 3f
and 5-hydroxy-4-chloro-7-azaindole 4f was best
accomplished using camphorsulfonyloxaziridine8 and
Ti(i-PrO)4/t-BuOOLi.9 The former led to only 60%
conversion to the alcohol 3f and 58% isolated yield,
while the latter led to complete conversion to the alcohol
albeit in 50% isolated yield. In the case of 5-amino-7-
azaindoles 3e and 4e, the preparation was accomplished
using tosylazide10 as the electrophile. The crude azide
formed was then directly reduced to the amine by cat-
alytic hydrogenation with palladium on charcoal in 30%
and 41% overall isolated yield, respectively (entries 6
and 14). Finally, the anion derived from N-triisoprop-
ylsilyl-4-chloro-7-azaindole (2) was treated with tri-
isopropylborate and the boronic acid was obtained in
47% yield after ester hydrolysis during the acidic work-
up. This product was coupled under Suzuki condition11

to afford 4h (Scheme 1, E¼Ph) in 41% yield.
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Scheme 2. Reagents and conditions: (a) sec-BuLi, THF, )78 �C,

camphorsulfonyloxaziridine; (b) Zn, AcOH, EtOH; (c) TBAF, THF.
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Scheme 1. Reagents and conditions: (a) (i) sec-BuLi, 1.5 equiv, THF,

)78 �C, 1 h; (ii) electrophile (E).
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Scheme 3. Reagents and conditions: LiTMP, THF, )78 �C; ClCO2Me.

Table 1. Reactions of metalated azaindole with electrophile

Entry Reactant Electrophile Product R (3 or 4) Yield (%)

1 1 NFSI F (3a) 70

2 1 C2Cl6 Cl (3b) 68

3 1 CBr4 Br (3c) 63

4 1 NBS Br (3c) 26

5 1 ClCO2Me CO2Me (3d) 87

6 1 Tosylazide NH2 (3e) 30

7 1 Camphorsulfonyloxaziridine OH (3f) 58

8 1 Ti(i-PrO)4/t-BuOOLi OH (3f) 50

9 2 NFSI F (4a) 60

10 2 C2Cl6 Cl (4b) 86

11 2 CBr4 Br (4c) 80

12 2 NBS Br (4c) 68

13 2 ClCO2Me CO2Me (4d) 79

14 2 Tosylazide NH2 (4e) 66

15 2 Camphorsulfonyloxaziridine OH (4f) 65

16 2 Ti(i-PrO)4/t-BuOOLi OH (4f) 60

17 2 B(O-i-Pr)3 B(OH)2 (4g) 47
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In summary, the above reaction conditions resulted in
clean ortho-metalations at C-5 without any sign of halo-
gen scrambling,12 pyridyne formation,13 or competitive
lithiation at C-2.14

The above methodology was also used to improve on
the previously reported syntheses of 5-hydroxy-7-aza-
indole (6). The synthesis of alcohol 6 was first reported
by Robinson et al., starting from 7-azaindoline-N-oxi-
de15 while the synthesis of the corresponding methyl
ether was described by Viaud et al.16 In the former
synthesis, a nonregioselective N-oxide rearrangement
with acetic anhydride was reported to give a mixture of
5- and 6-acetoxyazaindoline, while the latter approach
involved an Ullman coupling of 5-bromo-7-azaindole.
We obtained alcohol 6 in three steps and 26% overall
yield starting from 4-chloro-1-triisopropylsilanyl-7-aza-
indole (2) (Scheme 2). Reduction of 4-chloro-5-hydroxy-
1-triisopropylsilanyl-7-azaindole (4f) with zinc in EtOH/
acetic acid gave 5-hydroxy-1-triisopropylsilanyl-7-aza-
indole (5) in 65% yield. The silicon group was then
removed using TBAF to provide 5-hydroxy-7-azaindole
(6) in 70% yield.

Iterative lithiation leading to 4,5,6-trisubstituted 7-aza-
indoles can also be carried out when an ortho-directing
group is introduced at C-5 although alkyllithium bases
could not be used due to aromatic nucleophilic substi-
tutions of fluorine or chlorine at C-4. For example,
4-chloro-5-fluoro-1-triisopropylsilanyl-7-azaindole was
deprotonated with lithium tetramethylpiperidide
(LiTMP) in THF at )78 �C and the resulting anion was
trapped with methylchloroformate to yield 6-carbo-
methoxy-4-chloro-5-fluoro-1-triisopropylsilyl-7-azaindole
(7) in 61% yield (Scheme 3).

Alternatively, functionalization at C-6 could also be
carried out through a rearrangement involving an
appropriate N-oxide. This strategy has the advantage of
providing access to 4,6-disubstituted azaindoles, as well
as 4,5,6-trisubstituted-7-azaindoles bearing non-ortho-
directing functional groups at the 5-position. For
example, 4-chloro-7-azaindole-N-oxide 8 was reacted
with methanesulfonyl chloride to give 4,6-dichloro-7-
azaindole (9) in 58% yield (Scheme 4). This product was
then protected with triisopropylsilyl chloride to give 4,6-
dichloro-1-triisopropylsilyl-7-azaindole (10) in 76%
yield. ortho-Metalation with sec-butyllithium, followed
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Scheme 4. Reagents and conditions: (a) m-CPBA, CHCl3; (b) Me-

SO2Cl, DMF, 80 �C; (c) NaH, TIPSCl, THF, 80 �C; (d) sec-BuLi,

THF, )78 �C, tosylazide; (e) H2, Pd/C, EtOAc.
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by addition of tosylazide to the resulting anion, gave 5-
azido-4,6-dichloro-1-triisopropylsilanyl-7-azaindole (11)
in 46% yield. This product can be reduced to 5-amino-
4,6-dichloro-1-triisopropylsilanyl-7-azaindole (12) using
catalytic hydrogenation in a quantitative yield.

In summary, we have demonstrated a new strategy for
the functionalization of 7-azaindoles leading to substi-
tution patterns difficult to obtain using existing meth-
odology. We have also described the application of this
new methodology in an improved synthesis of 5-
hydroxy-7-azaindole (6).
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